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Any impairment in striated muscle function 
can interfere with the performance of daily 
activities, particularly for a patient already liv-
ing with a respiratory disorder. However, the 
interaction between the respiratory and mus-
culoskeletal systems is not always considered 
in the clinical management of these patients. 
Striated muscles are contractile elements that 
provide organisms with physiological func-
tions, such as movement and generation of 
both air- and blood-flow. The latter two func-
tions are essential for respiratory gas exchange. 
The generation of airflow requires the action of 
inspiratory muscles. When this muscle group 
contracts, the changes in intrathoracic pres-
sure allow air to enter the lungs. When these 
muscles relax, the air exits from the respira-
tory system. If additional effort is required to 
exhale, the expiratory muscle group contracts, 
increasing the alveolar–atmosphere pressure 
gradient. Although the diaphragm is the main 
inspiratory muscle, specifically in young and 
healthy subjects when they are at rest, other 
muscles progressively participate in the effort 
as ventilatory demands increase. These include 
external intercostals, parasternal and, to a 
lesser degree, the scalenes, sternocleidomas-
toid, latissimus dorsi, serratus and pectoralis 
muscles. The main expiratory muscles are the 

internal intercostals and those constituting the 
abdominal wall. Skeletal muscles located in the 
limbs (and also called peripheral muscles), are 
involved in the movements of the body. Any 
impairment in their function can interfere with 
the performance of daily activities. 

Muscle function becomes impaired in many 
different respiratory disorders, such as chronic 
obstructive pulmonary disease (COPD), cystic 
fibrosis, bronchial asthma, obstructive sleep 
apnea syndrome (OSAS), kyphoscoliosis and 
lung cancer. Although changes in respiratory 
mechanics in these diseases primarily target 
respiratory muscles, limb muscles can also 
be affected. In addition, respiratory and limb 
muscle dysfunction can occur in patients with 
myopathies, neurological and neuromuscular 
junction disorders, chronic heart failure, sepsis 
and other critical illness. In the intensive care 
unit (ICU), the condition called ICU muscle 
weakness is not only a limb problem but can also 
hamper weaning from mechanical ventilation. 

This review aims to brief ly present basic 
concepts of skeletal muscle physiology and to 
describe in-depth the muscle function impair-
ment occurring in some of the most prevalent 
respiratory conditions, defining the factors and 
mechanisms involved in the etiopathogenesis of 
muscle dysfunction in this setting. 
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Many respiratory diseases lead to impaired function of skeletal muscles, influencing quality of 
life and patient survival. Dysfunction of both respiratory and limb muscles in chronic obstructive 
pulmonary disease has been studied in depth, and seems to be caused by the complex interaction 
of general (inflammation, impaired gas exchange, malnutrition, comorbidity, drugs) and local 
factors (changes in respiratory mechanics and muscle activity, and molecular events). Some of 
these factors are also present in cystic fibrosis and asthma. In obstructive sleep apnea syndrome, 
repeated exposure to hypoxia and the absence of reparative rest are believed to be the main 
causes of muscle dysfunction. Deconditioning appears to be crucial for the functional impairment 
observed in scoliosis. Finally, cachexia seems to be the main mechanism of muscle dysfunction 
in advanced lung cancer. A multidimensional therapeutic approach is recommended, including 
pulmonary rehabilitation, an adequate level of physical activity, ventilatory support and nutritional 
interventions.
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Muscle physiology
The two main functional properties of both respiratory and limb 
muscles are: strength and endurance. The former can be defined 
as the ability to develop a brief maximal effort, whereas the lat-
ter could be described as the ability to maintain a submaximal 
contraction over time. Strength mainly depends on muscle mass, 
although other factors also contribute, such as muscle length, 
innervation, fiber size and the proportion of predominantly 
anaerobic fibers. Endurance is related to the aerobic properties of 
the muscle, which in turn, are conditioned by capillary density, 
proportion of type I fibers and enzyme activity in the oxida-
tive pathways, among other factors. When the strength and/or 
endurance of skeletal muscles is reduced, this is called muscle 
dysfunction and can be characterized in two ways: weakness and 
fatigue. Muscle weakness is related to the loss of muscle strength. 
Therefore, it can be identified easily in clinical conditions through 
the assessment of muscle force (determination of pressures gener-
ated by respiratory muscles and standard dynamometry to assess 
limb muscles). Weakness is a constitutive and relatively stable 
situation, and the muscle requires long-term therapeutic meas-
ures (training and nutritional interventions). By contrast, muscle 
fatigue is a temporary dysfunction related to endurance, and is 
primarily resolved by rest. It can be identified by neurophysi-
ological (changes in the high/low frequencies ratio or in centroid 
frequency) or mechanical (transient inability to perform a target 
task) indicators. Both conditions, weakness and fatigue, can be 
present simultaneously in the same patient, as a weak muscle will 
become fatigued much more easily.

Respiratory muscles
Inspiratory muscles ensure an appropriate level of ventilation 
to facilitate pulmonary gas exchange. Therefore, their dysfunc-
tion will result in hypoxemia and hypercapnia, and in venti-
lated patients can lead to difficulties in the weaning process. 
Malfunction of expiratory muscles will, in turn, give rise to dif-
ficulties upon exertion, coughing and attempts to expectorate 
secretions from the airways. Functional assessment of respiratory 
muscles is slightly more complicated than that of limb muscles, 
but can be achieved through determination of respiratory pres-
sures. A large number of studies have demonstrated that respi-
ratory muscle function can also be impaired in widely diverse 
disorders. These include COPD, cystic fibrosis, chronic asthma, 
scoliosis, neuromuscular diseases and also ICU muscle weakness 
and sepsis. 

Molecular and cellular events occurring in respiratory muscles 
with an impaired function are identified through biopsy analysis. 
However, the sampling of these muscles is always very invasive, 
and therefore their structural and molecular properties are studied 
less frequently than in limb muscles. Most studies have been per-
formed in the diaphragm, with samples obtained during thoracic 
or abdominal surgery owing to associated diseases [1–4]. However, 
data are also available regarding other inspiratory muscles, such 
as external intercostals, parasternals or even accessory muscles, 
such as latissimus dorsi [5]. Regarding expiratory muscles, data are 
scarce, but there are some reports on the major oblique muscle [6]. 

Disuse of respiratory muscles only occurs under very specific con-
ditions, such as mechanical ventilation. Conversely, overloading 
occurs more frequently because many different situations result in 
increased breathing. On the one hand, airway resistances increase 
in obstructive diseases. On the other, pulmonary hyperinflation 
or changes in thorax geometry can deny respiratory muscles their 
optimal length for contraction. Although some studies support 
that these factors are essential for respiratory muscle dysfunction, 
additional elements cannot be excluded. 

Peripheral muscles
The striated muscles of the upper and lower limbs constitute 
the peripheral muscles; the concept can also include the muscles 
of the shoulder and pelvic girdles. The muscles of the upper 
limbs are essential for manipulating objects, and for many of 
the tasks involved in personal care. In addition, some of them 
can be recruited to serve as ventilatory muscles when these are 
overburdened by respiratory loads [7,8]. In turn, the muscles of 
the lower limbs are essential for locomotion and exercise, and 
are crucial for many daily activities. The clinical implications 
of peripheral muscle dysfunction are important, as patients may 
be unable to work or take care of themselves, become extremely 
dependent on those around them and experience a reduction 
in their quality of life. Since tests for the functional proper-
ties of peripheral muscles are relatively simple [9], we know that 
many disorders can induce (or are associated with) limb muscle 
dysfunction, including COPD, scoliosis, chronic heart failure 
and cancer cachexia, among others. Peripheral muscles are very 
sensitive to disuse (deconditioning) and nutritional abnormali-
ties, two factors that many authors believe are pivotal for the 
occurrence of muscle dysfunction. However, other factors can 
also be implicated. 

Peripheral muscles are readily accessible for tissue sampling, 
facilitating analysis of the cellular and molecular changes that 
are associated with muscle dysfunction. In the following sections, 
these changes and their possible mechanisms will be reviewed. 
However, it is important to clarify that many of these structural 
and molecular studies have been performed in samples from the 
quadriceps muscle, particularly its external part (vastus latera-
lis). It is possible to speculate that not all the findings should be 
directly extrapolated to other peripheral muscles, whose functions 
are essentially different from those of the anterior thigh. Some 
studies performed in the upper limb muscles appear to confirm 
this hypothesis [10,11].

Muscle dysfunction can occur not only as a consequence of 
a disease or a treatment, but also in some more physiological 
circumstances, such as aging and extreme sedentary lifestyle. 
As mentioned above, it has been well described in COPD, bron-
chial asthma and lung cancer cachexia, among others. It is also 
characteristic of other disorders targeting the respiratory system, 
such as OSAS, neuromuscular and rib cage abnormalities [12–15]. 
The following sections review the causes and mechanisms of 
muscle dysfunction in the most common disorders that target 
the respiratory system and also respiratory and/or peripheral 
muscles (Box 1). 
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Respiratory disorders
Chronic obstructive pulmonary 
disease
COPD is a highly prevalent condition 
characterized by nonreversible airf low 
obstruction [301]. The main cause of 
COPD is tobacco smoking, which results 
in inflammatory phenomena leading to 
destruction of lung parenchyma and air-
way remodeling. In addition to airway 
obstruction, COPD results in pulmonary 
hyperinflation, increased airway resistance, 
changes in pulmonary compliance and gas 
exchange abnormalities, characterized by 
hypoxemia and, in some cases, hypercap-
nia. As a result, patients experience ventila-
tory limitations that impair their exercise 
tolerance. However, COPD is a heteroge-
neous disease and patients may also show 
extrapulmonary involvement, including 
malnutrition, and abnormalities in skel-
etal muscles, blood cells, renal and nerv-
ous systems and even bone metabolism 
[16–19]. Muscle dysfunction is probably the 
best-studied extrapulmonary manifestation 
occurring in COPD. It includes abnormali-
ties in the strength and endurance of both 
respiratory and limb muscles [3,20], and is believed to be of mul-
tifactorial origin, with local and general factors interacting to 
modify the phenotype and function of any particular muscle. 
Muscle dysfunction is relevant because it reduces exercise capac-
ity, which ultimately affects quality of life and influences patient 
survival [21]. 

Respiratory muscle dysfunction is frequently observed in many 
COPD patients [22–24], mostly in those with more advanced stages 
of the disease, and can involve both inspiratory and expiratory 
muscle groups. Regarding inspiratory muscle dysfunction, it is 
believed to mainly be the consequence of changes in lung function 
[23,25]. On the one hand, pulmonary hyperinflation, present in 
many patients, has a dramatic impact in the length–tension rela-
tionships of both the diaphragm and intercostal muscles (Figure 1) 

[7]. These muscles become shorter and larger, respectively, than 
their optimal length for generating force [25]. In addition, the cos-
tal and crural parts of the diaphragm lose their summatory action 
and become physiologically independent [26]. On the other hand, 
increased airway resistance and impaired gas exchange lead to an 
imbalance between demand and supply in the muscle [7,8]. One of 
the reasons to believe that hyperinflation is crucial for the develop-
ment of respiratory muscle dysfunction in COPD is that although 
these patients develop lower respiratory pressures than healthy 
subjects, they can generate even greater force than the controls 
when both groups perform a test maneuver at similar high lung 
volumes [23]. This finding also suggests some muscle adaptation 
to pulmonary hyperinflation. However, respiratory muscles are 
subjected to the same deleterious general factors as other muscles, 

including inflammation, oxidative stress, nutritional abnormali-
ties and the effects of tobacco and some drugs (Figure 1) [27–30]. The 
combination of these systemic factors and the adaptive changes 
that occur in the face of increased mechanical loads leads to 
important changes in the phenotype of respiratory muscles. On 
the one hand, the percentages of myosin heavy chain I, type I 
fibers (with a predominantly aerobic metabolism), capillary and 
mitochondria increase in the diaphragm, leading to a more oxida-
tive phenotype [1–3,31,32]. On the other hand, sarcomerae appear 
to shorten in this muscle, partially restoring their optimal length 
for contraction [2]. Interestingly, these positive phenomena coex-
ist with signs of myopathy (paracristalline inclusions), as well as 
oxidative stress, changes in the expression of local cytokines and 
protein imbalance [33–35], all of which can contribute to the loss of 
muscle function. Data from external intercostal, parasternal and 
accessory muscles are much more scarce, but also suggest a com-
bination of adaptive and negative phenomena [5,36–39]. Regarding 
expiratory muscles, the information is even more scant. Although 
their function deteriorates in many COPD patients [24,40], some 
of the factors should be different from those acting in the inspira-
tory or peripheral muscle groups. Changes in lung volumes will 
only negatively affect the length–tension relationships of inter-
nal intercostals, not those of abdominal muscles [41]. Moreover, 
deconditioning is unlikely since expiratory muscles are chronically 
activated for both the breathing effort and coughing in COPD 
patients [42,43]. However, they are also subject to all of the systemic 
factors present in other muscles. All of these circumstances result 
in changes to their phenotype and metabolism [7,8]. In this regard, 

Box 1. Respiratory system and muscle dysfunction.

Respiratory disorders, frequent comorbidities and drugs known to alter muscle 
structure and/or function are listed.

Respiratory disorders:
• Chronic obstructive pulmonary disease

• Bronchial asthma

• Sleep apnea–hypopnea and related syndromes

• Cystic fibrosis

• Scoliosis and other thoracic deformities

• Idiopathic pulmonary hypertension

Other conditions:
• ICU muscle weakness – deleterious effects of mechanical ventilation 

• Lung cancer (cachexia)

Frequent comorbidities:
• Chronic heart failure

• Sepsis

• Diabetes mellitus

• Aging – sarcopenia

Drugs:
• Corticosteroids

• Antagonists of b-adrenergic receptors

• Statins

• Diuretic drugs

• Phosphodiesterase 5 inhibitors

ICU: Intensive care unit.
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some reports have described fiber atrophy and minor changes in 
the proportions of fiber types in expiratory muscles of COPD 
patients [6,8]. Therefore, we can conclude that adaptation is not 
homogeneous for all respiratory muscles.

As discussed above, peripheral muscles constitute a heterogene-
ous group involved in many different tasks. The function of both 
lower and upper limb muscles appears to be impaired, to vary-
ing degrees, in many COPD patients [9,24,44–48], contributing to 
their exercise limitations [46,47,49,50]. The main cause of peripheral 
muscle dysfunction appears to be deconditioning due to a reduc-
tion in daily activities (Figure 2) [51,52]. This reduction would be the 
product of both the initial ventilatory defect and the emotional 
impairment frequently associated with COPD. A strong argu-
ment in favor of the key role played by muscle deconditioning 
in peripheral muscle dysfunction is that most of the changes 
described can be reversed by muscle training [51,53]. However, 
some of the changes are irreversible [47,51], which suggests that 
other factors may be implicated. Among these are the general 
factors described as affecting the respiratory muscles, which also 
affect limb muscles: systemic inflammation and oxidative stress, 
tobacco smoking, nutritional abnormalities, comorbidity and 
drugs, among others (Figure 2) [20]. The many studies of structural 
and molecular changes in the quadriceps of COPD patients have 
established that this muscle undergoes protein imbalance and 
atrophy (see next sections), as well as losses in different aerobic 
components. These include declines in myosin heavy chain I 
expression, percentage of type I fibers, fiber size, capillary density 
and myoglobin content, as well as impaired enzyme activities in 
the oxidative pathways [53–58]. All of these components could 

contribute to reduce both the strength and 
resistance of lower limb muscles in COPD 
patients. Moreover, some studies support 
the idea of impaired bioenergetics in the 
quadriceps of such patients, showing that 
this muscle is inefficient in its intra cellular 
use of oxygen [47,48]. Therefore, it could 
require greater oxygen consumption than 
healthy subjects for the same amount of 
work. The quadriceps also show major oxi-
dative stress that targets essential proteins 
in muscle structure and metabolism [59,60]. 
As a result, muscle damage occurs [61], and 
there is some evidence that this phenom-
enon is associated with defects in the mus-
cle regeneration process [62]. The latter, in 
turn, might be related to the underexpres-
sion of some local cytokines [63], but more 
evidence is necessary. Other authors have 
reported increased levels of inflammatory 
cells and proinflammatory cytokines in the 
quadriceps muscle of COPD patients [64]. 
All of these phenomena could contribute 
to the loss in muscle mass and function 
in the lower limbs. By contrast, muscles 
located in the scapular girdle and upper 

limbs show fewer dramatic changes [10,31,65], contributing to the 
heterogeneity of muscle adaptations that characterizes COPD. 
This is not surprising because these muscles probably have a 
lower exposure to a reduction in their activity. Moreover, they 
can even show an increase in their activity, as they frequently 
support ventilation under increased loads in COPD patients. For 
instance, normal, hypertrophic and atrophic fibers coexist in the 
deltoid muscle, which preserves its fiber type proportions and 
oxidative enzyme activities in COPD patients [10,11]. In a similar 
way, brachial biceps show fiber atrophy but maintain their fiber 
type percentages [65].

Acute exacerbations contribute to the progression of COPD and 
the deterioration of muscle function [66]. The increased inflamma-
tory load present in the lung during exacerbations may also have 
systemic repercussions and affect other regions, including skeletal 
muscles. In this regard, some authors have reported a reduction in 
muscle mass in various parts of the body during exacerbations [67]. 
This would be the result of a negative protein balance [68] and the 
activation of multiple pathways leading to a reduction in MyoD 
and IGF-1, and subsequent muscle atrophy [69–72]. In addition, 
the reduction in activity that frequently occurs during an exac-
erbation would also negatively affect limb muscles. In the case of 
respiratory muscles, the situation would be further aggravated by 
the indirect effects of the exacerbation in the mechanical loads of 
the ventilatory system. Conversely, muscle dysfunction has been 
shown to be an independent risk factor for severe exacerbations 
requiring hospital admission [73].

As a general conclusion, muscle dysfunction associated with 
COPD can involve many muscle groups. The extension and 
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Figure 1. Contributing factors to the respiratory muscle dysfunction of chronic 
obstructive pulmonary disease patients.
O2D: Oxygen delivery; Q: Perfusion; VA: Alveolar ventilation; VO2: Oxygen consumption.

Gea, Casadevall, Pascual, Orozco-Levi & Barreiro



www.expert-reviews.com 79

Review

intensity of the functional impairment is 
a consequence of the complex interaction 
of local and general factors in each muscle.

Bronchial asthma
This disorder is characterized by reversible 
episodes of airflow obstruction, which are 
the consequence of airway inflammation 
and edema, as well as hyperresponsiveness 
of bronchial smooth muscles [302]. Limb 
muscle weakness can occur, but is almost 
exclusive to chronic patients, as it is related 
to steroid treatment [74] and muscle disuse 
[75]. Unfortunately, structural and meta-
bolic analyses of these muscles are surpris-
ingly scarce, and the potential bias of a ster-
oid myopathy (see ‘Treatments commonly 
used in respiratory disease patients’ sec-
tion) is not always controlled. From some 
of these studies we know that magnesium 
tends to be diminished in the quadriceps 
muscle of these patients [76]. However, the 
precise impact of this abnormality on mus-
cle function remains unknown. Respiratory 
muscles in turn appear to maintain or 
improve their functional properties in 
chronic asthma patients, even in the pres-
ence of pulmonary hyperinflation [77–80]. 
Since these muscles are actively recruited in 
chronic asthma, it is possible to hypothesize 
a training-like phenomenon similar to that present in COPD. 
As for peripheral muscles, there are few studies on the structural 
and molecular properties of respiratory muscles in patients with 
asthma. Moreover, most research has been carried out on necropsy 
specimens. Some studies suggest that the diaphragm is hyper-
trophied in patients with chronic asthma [80], but others have 
reported fiber atrophy [74]. It is possible that the relative weight 
of the contributing factors in different populations of chronic 
asthma patients may account for these conflicting results. 

Acute asthma attacks represent a completely different situation. 
In this case, the combination of an acute increase in mechanical 
loads (greater airway resistance and pulmonary hyperinflation) 
[81], and deteriorated oxygen delivery to the tissues act on a non-
trained muscle and can result in transitory muscle dysfunction 
[82]. However, if the situation progresses to a severe asthma exacer-
bation, rhabdomyolysis and/or muscle fatigue may occur [83,84], 
and it may even be fatal. 

Respiratory disorders related to sleep
Sleep apnea syndrome and related disorders are characterized 
by the presence of repeated total or partial occlusions of the 
upper airways during sleep. The consequences include noctur-
nal hypoxemia, loss of sleep structure and diurnal hypersomnia 
[85–87]. Skeletal muscle dysfunction has been described in patients 
with sleep disorders, and specifically in those with OSAS. These 

patients can show impaired strength and endurance in both 
inspiratory and limb muscles, although fatigability appears to 
only be increased in the inspiratory group [88]. These abnormali-
ties appear to be related to the absence of reparative rest during 
sleep deprivation, and mostly to the presence of hypoxia–nor-
moxia cycles [8,89]. Functional impairment is associated with cel-
lular and molecular changes in different limb muscles (quadri-
ceps and tibialis anterior), such as increases in the size of type II 
fibers, protein content and the number of blood vessels [90,91]. 
The increase in capillarity in turn is probably the result of the 
overexpression of VEGF [92], as a consequence of the repeated 
bouts of hypoxia. Sleep deprivation and hypoxia would also affect 
respiratory muscles [93], but in this case another factor is present: 
inspiratory muscles perform progressively submaximal efforts in 
apneic events [94,95] that could result in muscle fatigue, but might 
also mimic muscle training. In fact, respiratory muscle strength 
and endurance appear to be roughly maintained in many patients 
with sleep apnea [88,96–98]. However, as previously mentioned, 
there is a reduction in their reserve against fatigue [96,97], mostly 
in those patients with severe disease. Structural and molecular 
studies performed in the external intercostal muscle have dem-
onstrated an increase in the size of type II fibers coexisting with 
a decrease in oxidative stress and the proportion of type I fibers 
[99]. Although treatment with continuous positive airway pressure 
(CPAP) restores sleep quality and reduces nocturnal ventilatory 
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Figure 2. Contributing factors to the peripheral muscle dysfunction of chronic 
obstructive pulmonary disease patients. 
†Deconditioning is clearly involved in lower limb muscle dysfunction but not so much for 
upper limb muscle dysfunction. 
‡The existence of a true COPD myopathy is also controversial.
COPD: Chronic obstructive pulmonary disease.
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effort, it only partially improves respiratory muscle function [97,99]. 
The lack of complete restoration might be explained by the per-
sistence of oxidative stress in the muscle [99] and the probable 
presence of pulmonary hyperinflation due to the CPAP treatment. 
Finally, upper airway muscles, which have an important role in 
the pathophysiology of OSAS, have shown mechanical, structural 
and metabolic changes in patients suffering from this condition. 
Musculus uvulae, for instance, shows an increased strength along 
with larger fibers, a higher protein content and better anaerobic 
enzyme capacity in OSAS patients than in nonapneic snorers 
[100,101]. Although genioglossus dysfunction has been reported in 
patients with OSAS, cellular findings are less impressive [102] and 
only a mild increase in the proportion of anaerobic fibers has been 
reported [103]. Interestingly, CPAP reverse these functional and 
structural changes, suggesting that these are the consequence, 
and not the cause, of the obstructive problem.

Cystic fibrosis
Muscle dysfunction is also frequent in cystic fibrosis. Cachexia, 
systemic inflammation and gas exchange abnormalities are fre-
quently associated with advanced stages of the disease, potentially 
targeting all skeletal muscles [104,105]. These factors, along with 
deconditioning, will determine the weakness reported for limb 
muscles. However, respiratory muscles will face a chronic increase 
in ventilatory workloads, which would have effects similar to 
those reported in COPD patients. Therefore, although structural 
studies are lacking, this muscle group would exhibit phenotypes 
and function resulting from the complex interaction of multiple 
deleterious factors with a training effect [105]. 

Scoliosis & other thoracic deformities
Scoliosis is defined by a lateral curvature of the spine associated 
with vertebral rotation. This also results in chest deformity, back 
pain, ventilatory restriction, respiratory and limb muscle weakness 
and exercise limitation [15,106]. Although respiratory muscle dys-
function has classically been attributed to chest deformity, limb 
muscle dysfunction appears to be the consequence of decondition-
ing, probably thorough the development of local oxidative stress 
[106]. Therefore, especially in adolescents with scoliosis, muscle 
training would improve their physical performance. By contrast, 
chest surgery options do not appear to improve muscle function 
in these patients [Gea J et al., Unpublished Data]. In individuals with 
advanced stages of thoracic deformity and chronic respiratory fail-
ure, noninvasive mechanical ventilation can be useful to improve 
ventilation and gas exchange [107,108].

Idiopathic pulmonary hypertension
This condition is characterized by an increase in the blood pres-
sure in pulmonary vessels. One of the most frequent symptoms 
in idiopathic pulmonary hypertension is exercise intolerance. 
Although this is believed to be caused mainly by vascular fac-
tors, some authors have suggested a role for muscle dysfunction 
[109,110]. This would affect both respiratory and peripheral mus-
cles, suggesting the involvement of systemic factors. Moreover, 
the impairment in functional outcomes has been shown to be 

associated with structural and molecular changes, including mus-
cle atrophy and a reduction in the proportion of aerobic fibers in 
the quadriceps muscle [111]. 

Other circumstances related to respiratory system 
targeting of skeletal muscles 
ICU muscle weakness 
Many different factors, such as systemic inflammation, sepsis, 
multiorganic failure, malnutrition, malposition, drugs, dyselec-
trolytemia and mechanical ventilation [112–115], can contribute 
to muscle weakness in critically ill patients. These and other 
still unknown factors can result in axonal and demyelinating 
neuropathies, defects in the neuromuscular junction and acute 
myopathies. The latter have specific characteristics, including 
fiber atrophy, the loss of myosin and the presence of mitochon-
dria with paracrystalline inclusions [116,117]. The consequences 
of muscle dysfunction in ICU patients are very relevant because 
the weaning process will be more difficult as a result [118,119], 
and intense rehabilitation is required to ensure reintegration into 
everyday activities. 

The different modalities of mechanical ventilation (MV) assist 
or substitute for respiratory muscles in their function of providing 
ventilation to maintain pulmonary gas exchange. Classical MV 
with anesthesia-paralysis results in early respiratory and peripheral 
muscle dysfunction. This appears to mainly be the consequence 
of inactivity, a very harmful factor that can induce diaphragm 
atrophy at only 48 h of MV [113]. By contrast, noninvasive MV 
and those forms of classical MV involving the periodic use of 
respiratory muscles do not appear to induce severe dysfunction 
because contractile activity is preserved. On the contrary, in most 
cases they provide rest to fatigued muscles and reduce the work 
of weakened muscles. 

Lung cancer cachexia 
Cachexia is a complex metabolic syndrome characterized by the 
loss of muscle mass, which is common in advanced malignant 
diseases, including lung cancer. Anorexia is frequently associ-
ated with cachexia [120,121], which targets muscle by inducing 
protein imbalance and atrophy [122], both resulting in muscle 
weakness. On the one hand, gluconeogenesis degrades structural 
and functional muscle proteins as a source of energy. On the 
other, protein synthesis also becomes affected [123–125]. Moreover, 
some cytokines, such as TNF-a, IL-1b, IL-6 and IFN-g [126,127], 
oxidative stress derived from metabolic changes and the use of 
antineoplastic drugs appear to be directly involved in this pro-
tein imbalance [128,129]. Peripheral muscle weakness occurring in 
cachectic patients causes their quality of life to deteriorate through 
progressive limitation of their daily activities. In addition, ventila-
tory failure may occur when respiratory muscles become affected. 
In fact, a third of deaths in cancer patients have been attributed 
to muscle dysfunction. 

Skeletal muscle wasting is a prominent feature in patients with 
lung cancer [130], even in those with normal bodyweight [131]. 
In addition, this has been shown to be not only a risk factor for 
prognosis, but a predictor of cancer treatment toxicity [131]. In the 
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same regard, proteolysis has been shown to be negatively related 
to survival in non-small-cell lung cancer [132]. 

General factors involved in muscle dysfunction in 
respiratory disorders
Although some general factors, such as tobacco smoking, are more 
specific to COPD, others (systemic inflammation, sedentarism, 
comorbidity, aging, drug effects and so on) are common to vari-
ous respiratory diseases. Below, we review the most relevant gen-
eral factors believed to influence muscle function in respiratory 
patients:

Tobacco smoking 
Different reports appear to indicate that tobacco smoking per se 
can induce muscle dysfunction by different mechanisms, includ-
ing oxidative stress and a decrease in protein synthesis [30,133–135]. 
Therefore, a point that still remains unclear is whether the initial 
stimulus that affects the muscle is just the direct result of the 
aggressive action of smoking itself or is secondary to the inflam-
mation caused by smoking in lung parenchyma, pulmonary blood 
vessels and the airways [136]. In either case, and indeed they prob-
ably coexist, inflammation will affect systemic circulation reach-
ing various organs (including muscles) and contributing to their 
dysfunction [137,138]. An intriguing question is what causes the 
inflammatory response to persist after the initial noxious stimulus 
has disappeared. Current thinking on the answer to this ques-
tion is based on the hypothesis that these mechanisms may be 
immunological [139].

Inflammation 
There is overwhelming evidence to support the hypothesis that 
a certain level of systemic inflammation is present in COPD [52]. 
It has been shown that serum levels of certain inflammatory 
biomarkers (C-reactive protein, fibrinogen and several cytokines) 
are elevated in these patients [27,137], and higher white blood cell 
counts have also been found [137,140]. Moreover, it has recently 
been suggested that the systemic manifestations of COPD may be 
an expression of an attenuated form of the systemic inflammatory 
response syndrome [141]. This syndrome has traditionally been 
conceptualized in the context of the multiorgan failure associ-
ated with sepsis [112], but could also be present in a minor form in 
other chronic conditions, such as COPD [141,142], cystic fibrosis 
[105] or asthma. Systemic inflammation can have important effects 
on muscles: various cytokines can induce an increase in local 
protein degradation through oxidative stress or the activation 
of proteolytic pathways [143,144], both found in COPD muscles 
[29,59,145,146]. Furthermore, certain proinflammatory cytokines 
can inhibit muscle contraction [147], although they appear to be 
necessary for muscle repair [148].

Oxidative stress
This is closely related to inflammatory mediators, which in 
conjunction with other factors also present in chronic diseases, 
such as COPD, lead to oxidative and nitrosative stress [8,149,150]. 
Inversely, the stress can act as a signal for increased expression 

of proinflammatory cytokines [150]. Oxidative stress is the result 
of an imbalance between reactive oxygen species, a product of 
aerobic metabolism, and antioxidant mechanisms present in cells 
and tissues. When the action of oxidants overcomes that of anti-
oxidants, certain molecules become modified and their function 
is impaired as a result. Oxidative stress has been found in various 
organs of COPD patients, including the lungs, blood and mus-
cles [4,34,59,151]. Although both respiratory and peripheral muscles 
exhibit oxidative stress, it appears to be greater in the limbs of both 
these patients and animal models of COPD [4,60,152].

Nutritional abnormalities 
Although relatively frequent in COPD, cystic fibrosis, scoliosis 
and lung cancer [104,105,130,153,154], nutritional impairment is rela-
tively rare in other conditions, such as bronchial asthma. In the 
particular case of COPD there is wide geographical diversity in 
the prevalence of nutritional abnormalities. The range is from 
approximately 5% in Mediterranean countries to 25% or more 
in Northern Europe and North America [155]. Nutritional abnor-
malities have been attributed to factors such as lifestyle, a reduc-
tion in food intake [156], an increase in metabolic costs [53] and, 
more recently, the presence of systemic inflammation [27,157] and 
changes in the metabolism of certain substances, such as leptin 
[156]. Nutritional status is a good predictor of mortality in COPD 
and lung cancer patients [131,158] and can influence their mus-
cles. Specifically, malnutrition results in decreased muscle mass, 
changes in fiber type percentages and muscle dysfunction [159,160].

Comorbidity & aging
The increased life expectancy in developed societies has resulted 
in a high percentage of elderly patients [161]. In addition, as a con-
sequence of the etiopathogenic factors shared by respiratory con-
ditions and other disorders, comorbidity is frequently observed. 
In these circumstances, muscle dysfunction has been attributed 
to sarcopenia, characteristic of elderly subjects, and to abnor-
malities in muscle function also present in highly prevalent dis-
eases, such as chronic heart failure, diabetes and rheumatological 
diseases [46,162,163].

Extreme sedentarism
This is very common in developed countries and leads to cardio-
vascular and muscle deconditioning. In fact, the level of physical 
activity, which is the determinant for an appropriate muscle phe-
notype, is a prognostic factor for exacerbations and even for life 
expectancy in patients with COPD [164–166]. However, this factor 
seems to be especially important in peripheral muscles because 
the activity of respiratory muscles would even be even increased 
in sedentary individuals with respiratory disorders. 

Gas-exchange abnormalities
Hypoxemia and hypercapnia are frequently observed in many 
respiratory diseases and can result in a decrease in muscle strength 
or endurance [167–169]. Hypoxemia can reduce oxygen delivery to 
the muscle. This reduction will be even higher in the presence of 
anemia, a circumstance also very prevalent in chronic diseases, 
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such as COPD. If tissue hypoxia develops it can result in a reduc-
tion in stored energy and protein synthesis, impairing muscle con-
traction [170–172]. In a similar way the presence of hypercapnia will 
affect muscle contractility, both directly and indirectly, through 
the development of muscle acidosis [167,173].

Treatments commonly used in respiratory disease 
patients
Corticosteroids can induce both acute and chronic myopathies, 
mostly when used systemically [174]. Although the use of sys-
temic corticosteroids has declined considerably, these agents are 
still necessary in the management of certain seriously ill patients. 
Corticosteroids also appear to be used more liberally in certain 
European countries and in North America, perhaps owing to the 
particular characteristics of the health systems in those countries. 
Acute myopathy can develop following administration of high doses 
of corticosteroids [175] and is characterized by marked weakness that 
can affect various muscle groups [176]. The structural bases of this 
functional impairment are the loss of myosin filaments and rhab-
domyolysis [177,178]. Chronic myopathy in turn is the consequence 
of long-term administration of steroids, even at relatively low doses 
[179]. It is mainly characterized by muscle weakness in proximal 
muscle groups (girdles and trunk) [179]. Cellular and biochemical 
abnormalities underlying chronic myopathy include type II fiber 
atrophy, an imbalance in protein synthesis and degradation, and 
abnormalities in carbohydrate metabolism [179,180]. 

Anticholinergics are used in respiratory patients as bronchodi-
lators to block muscarinic receptors of acetylcholine, and thus 
relax airway smooth muscles. Although their effects on skeletal 
muscles are irrelevant at standard doses, higher levels can impair 
diaphragm contraction [181] and reduce muscle reaction time [182].
b-blockers are competitive antagonists of b-adrenergic receptors 

and are widely used in cardiovascular disorders, such as hyper-
tension and ischemic heart disease. Since many patients with 
respiratory diseases also present these comorbidities, they fre-
quently receive systemic b-blockers. This occurs even in subjects 
also receiving inhaled b-agonists. b-blockers decrease myocardial 
contractility [183,184] and have also been shown to facilitate skeletal 
muscle fatigue [185], although they do not appear to reduce skeletal 
muscle strength [186]. 

Calcium channel blockers inhibit channels that mediate the 
entry of extracellular Ca2+ into muscle cells. Calcium channel 
blockers are extensively used in respiratory patients with cardio-
vascular comorbidities (systemic hypertension, angina pectoris 
and so on) and have negative inotropic effects on myocardium. 
However, this effect has not been described for skeletal muscles. 
Nevertheless, there is some evidence about the action of calcium 
channel blockers on attenuation of contraction-induced muscle 
damage [187] and the differentiation of muscle myoblasts/satel-
lite cells [188]. This could have some negative influence in the 
remodeling process undergone by respiratory muscles in obstruc-
tive diseases, but might also attenuate the progression of some 
myopathies. 

Statins are widely used for dyslipidemia because they inhibit 
an enzyme that catalyzes an early step in cholesterol biosynthesis. 

Their major adverse effect is a myopathy, mainly characterized 
by rhabdomyolysis and intense muscle pain, that initiates in the 
arms and thighs [183,184]. Note that drugs, such as macrolides, 
frequently used in exacerbations of COPD, interact with statins 
and can augment their effects [183].

Diuretic drugs can lead to electrolytic imbalance, which in turn 
can deteriorate muscle function. In this regard, abnormalities 
in the plasma levels of Na+, K+, Cl- and other ions can result in 
impaired contraction and easier fatigability.

Phosphodisterase 5 inhibitors augment cyclic GMPc by inhibit-
ing a key enzyme, which results in smooth muscle relaxation and 
vasodilation. Therefore, they are being used for pulmonary hyper-
tension and erectile dysfunction [183,184]. Some of these drugs have 
also been shown to inhibit the muscle effects of insulin (capillary 
recruitment and glucose uptake) [189], which might result in early 
muscle fatigue. However, there is also some evidence in animal 
models that phosphodisterase 5 inhibitors might ameliorate 
muscle damage in muscle dystrophy [190].

Expert commentary
Respiratory disorders (e.g., COPD, bronchial asthma and thoracic 
deformities) and their treatments (drugs and mechanical ventila-
tion) are frequently associated with respiratory and/or limb mus-
cle dysfunction. Whereas respiratory muscle dysfunction results 
in ventilatory problems, limb muscle dysfunction leads to a reduc-
tion in exercise tolerance and limitation of many everyday tasks. 
Muscle dysfunction is attributed to the complex interaction of 
general and local factors, including inflammation, oxidative stress, 
comorbidities, drugs, increases and decreases in muscle activity 
and changes in thorax geometry. Greater knowledge about the 
causes and consequences of the muscle dysfunction that occurs 
in respiratory disorders would open new therapeutic strategies, 
including a more rational use of current drugs and muscle train-
ing, and perhaps, to the adoption of new antioxidants, NSAIDs, 
anabolic agents and calcium sensitizers as they become available. 

Five-year view
There are good reasons to believe that the next few years will 
bring not only increased knowledge about the mechanisms of 
muscle dysfunction in respiratory diseases but also new therapeu-
tic approaches to the management and treatment of muscle dys-
function. In this respect, recent conceptual advances have opened 
the way to optimizing classical instruments. These include the 
expanded use of rehabilitation programs. Although rehabilitation 
is indicated in many COPD guidelines [191,301], the actual use of 
this integral therapy is still relatively limited. However, particularly 
when it involves muscle and general exercise training, rehabilitation 
has a considerable effect, not only on muscle function, but also on 
reduction of exacerbations and improved exercise tolerance, quality 
of life and even patient survival [51,192–194]. This can be applied, not 
only to COPD, but also to many other respiratory conditions, such 
as cystic fibrosis and scoliosis. It is important to note, however, that 
not all COPD patients will respond to muscle training. In the more 
advanced stages of the disease, when nutritional abnormalities 
become very relevant and/or exacerbations are extremely frequent, 
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these subjects would need additional measures in order to restore 
even minimal performance. Noninvasive MV, a technique that 
is already well accepted in the management of COPD exacerba-
tions and restrictive disorders, could also prove to be useful in 
selected stable patients with obstructive diseases. However, this will 
depend on better identification of the most appropriate candidates 
[141,195]: those in whom ventilatory support allows the muscles the 
rest they need. In addition, it should be taken into account that 
mechanical ventilation can also have deleterious effects on muscle 
function in specific groups of patients. The administration of drugs 
with anabolic, anti-inflammatory or antioxidant properties can 
be expected to increase dramatically in the coming years [152,196]. 
Specifically, nutritional supplements, testosterone and other ana-
bolic agents appear to have a beneficial effect on muscle mass, 
muscle strength, quality of life and survival in particular groups 
of patients [154,197,198]. For example, the use of nutritional support 
has been shown to be beneficial in subjects who have lost weight. 
One novel prospect is the potential use of ghrelin (a growth hor-
mone secretagogue) and growth factors similar to those produced 
by healthy muscle during training (mechano growth factor) [199] 
or substances inhibiting myostatin [200]. By contrast, drugs with 
anti-inflammatory properties should be used with more caution, 
since some of the proinflammatory cytokines have dual effects on 
the muscles. On the one hand, they can cause damage and impair 
contraction, but on the other they appear to be necessary for muscle 
growth and regeneration [201,202]. Since one of the factors impli-
cated in muscle dysfunction is oxidative stress, it is not surprising 
that there is increased evidence on the potentially beneficial effects 
on muscles of antioxidants, such as N-acetylcysteine, vitamin E 
and a-tocopherol [152,203]. Another active research field studies the 
use of nonsteroidal anti-inflammatory agents to modulate muscle 

structure and function [204]. Other drugs widely used in patients 
with cardiovascular disorders, such as angiotensin-converting 
enzyme inhibitors, have been shown to prevent cachexia and 
improve muscle strength [205,206]. More recently, calcium sensi-
tizers, widely used in chronic heart failure, have demonstrated 
their ability to improve contractility of diaphragmatic fibers from 
COPD patients, as well as respiratory muscle function of healthy 
individuals [207]. This finding opens new perspectives for drug 
management of muscle dysfunction in the near future. In addition, 
surgical and endoscopic procedures can result in reductions of lung 
volume that reshape the diaphragm in COPD, thus restoring its 
mechanical properties [208,209]. Although these procedures are still 
only used in very specific patients, it is to be expected that new 
techniques will extend their use. 

Finally, we should not forget that tobacco smoking is known 
to negatively influence muscle function in respiratory diseases. 
Health policies that have been implemented in many countries 
to eradicate smoking, along with measures devoted to increasing 
the level of physical activity, are expected to definitively decrease 
muscle dysfunction as a complication for our respiratory patients.s
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Key issues

• Muscle dysfunction is frequent in many disorders targeting the respiratory system. These include chronic obstructive pulmonary 
disease, chronic asthma, obstructive sleep apnea syndrome, cystic fibrosis, lung cancer, thoracic deformities and neuromuscular 
disorders.

• Respiratory muscle dysfunction results in hypoventilation and can lead to death. It can also hamper the weaning process in 
mechanically ventilated patients. Peripheral muscle dysfunction results in exercise limitation and restrictions in many daily activities.

• Muscle dysfunction associated with chronic obstructive pulmonary disease is probably the result of the complex interaction between 
local and systemic factors. While pulmonary hyperinflation appears to be the main factor contributing to respiratory muscle 
dysfunction, deconditioning is believed to play a determinant role in peripheral muscle dysfunction.

• Drugs typically used in respiratory disorders, including corticosteroids, b-blockers and diuretics, can impair muscle function.

• A wider and better use of both rehabilitation programs and noninvasive mechanical ventilation, as well as appropriate nutritional 
support and pharmacological strategies (antioxidants, nonsteroidal anti-inflammatory agents, growth factors and calcium sensitizers), 
will open new possibilities in the treatment of muscle dysfunction. 
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